

HT-50

PRODUCT DESCRIPTION

The HT-50 silicon carbide neutron sensor is designed for thermal neutron metrology. It is a 50mm² active area heterojunction diode in a 2 pin ceramic package, with excellent neutron specificity.

The HT-50 sensor can be operated up to 175°C. It exhibits lower leakage current than the AT-50 sensor. It is used in reverse bias with a recommended bias supply of 45V.

In use the sensor produces a current pulse coinciding with each single neutron interaction. The pulse rise time at ambient temperature is under 100 nS. The decay time is dependent on readout electronics; an exponential decay with t $^{1/2}$ of ~ 25 µS is typical.

BENEFITS

- Excellent thermal neutron specificity
- Very low gamma sensitivity
- High thermal neutron efficiency
- Detects single Neutron interactions
- Sub-nA leakage current between ambient and 175°C
- Compact
- Low power requirement
- Robust design developed for Oil and Gas Survey applications

APPLICATIONS

- Oil and Gas Exploration
- Reactor Compartment monitoring
- Environmental monitoring
- Security screening
- Radiological safety
- Neutron flux guide metrics
- Nuclear physics instrumentation
- Nuclear reactor diagnostics

HT-50

TECHNICAL DATA

Fig. 1 Pin Configuration

P lead pitch 2.54 mm
D diameter 16.5 mm
T thickness 4.0 mm
Active area 50 mm²

Fig. 2 Dimensions

SPECIFICATIONS

Symbol	Description	Max	Min	Тур	Unit
V_{rb}	Reverse bias voltage	100*	0	45	V
I _f	Safe Forward Current	0.1	N/A	N/A	mA
I _I	Leakage current at 45Volts reverse bias at 20°C	0.1	0	0.05	nA
T _{sto}	Storage temperature	110	0	20	°C
T _{op}	Operating temperature	175	10	150	°C
P _{itch}	Lead pitch			2.54	mm
D _{iam}	Package diameter			16.5	mm
T _{hic}	Package thickness	4.5	3.2	4.0	mm
A _{act}	Device active area			50	mm ²
A _{neu}	Thermal neutron cross sectional area.			8.12	mm ²
C _{min}	Capacitance at operating bias			600	pF
C_{max}	Typical unbiased capacitance			3500	pF
N _{eff}	Thermal neutron detection efficiency	8.0	5	7	%

^{*} Do Not Exceed

HT-50

OPERATING GUIDELINES

Simplest operation is achieved using a Microfab HT-50 Thermal Neutron Sensor Kit.

For users requiring integration with their own or 3rd party equipment we offer the following guidelines:

- The HT-50 should be operated in a screened, light-tight enclosure.
- Isolation from mechanical vibration is desirable.
- The HT-50, the preamplifier and the interconnection should be electrically screened
- The enclosure should provide the necessary electrical screening
- The HT-50 should be connected to a low noise, high gain, charge sensitive preamplifier using the shortest possible low capacitance screened interconnection
- Typically Pin 1 of the HT-50 is connected to the preamplifier input.
- Typically Pin 2 of the HT-50 is connected to a stabilised current limited bias voltage at +45V.
- Reverse bias gives improved signal-to-noise ratio, faster signal rise time and reduces the device capacitance.
- The HT-50 should NOT be forward biased. Passing forward current in excess of 0.1mA may cause permanent damage.
- A feedback network comprising \sim 50 M Ω resistor in parallel with \sim 1 pF capacitor is appropriate.
- The signal rise time associated with neutron events is very fast so to condition the signal it is appropriate to use a shaping amplifier set to ~1µS shaping time constant.

Fig. 3 Biasing and Readout

HT-50

SIGNAL CHARACTERISTICS

Neutron detection events are indicated by a sharp negative pulse from the output of a Microfab inverting gain preamplifier, with exponential recovery based on the feedback loop time constant (see Figures 4, 5 & 6).

Fig 6. High Amplitude Pulse at 150°C

HT50_V1_6.doc

4

HT-50

Detection spectra are substantially similar at temperatures up to 150 °C. Above 150 °C the edge of the noise floor begins to move to higher channel numbers. The preamplifier pulse amplitude will vary between the noise level and a maximum due to the random direction and various energies of neutron reaction products. The original event energies possible are 1.78MeV, 6% alpha branch, 1.47MeV, 94% alpha branch, 1.03MeV 6% Li+ branch, and 840keV, 94% Li+ branch and events due to these maximum energies are visible as edges in the event spectrum shown in Figure 7.

Event Energy by Channel Number

Fig. 7 Energy distribution of typical thermalised neutron spectrum